Hylomorphic solitons in the nonlinear Klein-Gordon equation

نویسنده

  • J. Bellazzini
چکیده

Roughly speaking a solitary wave is a solution of a field equation whose energy travels as a localised packet and which preserves this localisation in time. A soliton is a solitary wave which exhibits some strong form of stability so that it has a particle-like behaviour. In this paper we show a new mechanism which might produce solitary waves and solitons for a large class of equations, such as the nonlinear Klein-Gordon equation. We show that the existence of these kind of solitons, that we have called hylomorphic solitons, depends on a suitable energy/charge ratio. We show a variational method that allows to prove the existence of hylomorphic solitons and that turns out to be very useful for numerical applications. Moreover we introduce some classes of nonlinearities which admit hylomorphic solitons of different shapes and with different relations between charge, energy and frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hylomorphic solitons

This paper is devoted to the study of solitary waves and solitons whose existence is related to the ratio energy/charge. These solitary waves are called hylomorphic. This class includes the Q-balls, which are spherically symmetric solutions of the nonlinear Klein-Gordon equation (NKG), as well as solitary waves and vortices which occur, by the same mechanism, in the nonlinear Schroedinger equat...

متن کامل

SOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD

In this paper, nonlinear Klein-Gordon equation with quadratic term is solved by means of an analytic technique, namely the Homotopy analysis method (HAM).Comparisons are made between the Adomian decomposition method (ADM), the exact solution and homotopy analysis method. The results reveal that the proposed method is very effective and simple.

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008